a2 United States Patent

Blinick et al.

US009152599B2

(10) Patent No.: US 9,152,599 B2
(45) Date of Patent: Oct. 6, 2015

(54) MANAGING CACHE MEMORIES

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Stephen L. Blinick, Tucson, AZ (US);
Lawrence Y. Chiu, San Jose, CA (US);
Evangelos S. Eleftheriou, Rueschlikon
(CH); Robert Haas, Rueschlikon (CH);
Yu-Cheng Hsu, Tucson, AZ (US);
Xiao-Yu Hu, Rueschlikon (CH); Ioannis
Koltsidas, Rueschlikon (CH); Paul H.
Muench, San Jose, CA (US); Roman
Pletka, Rueschlikon (CH)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 283 days.

(21) Appl. No.: 13/920,669

(22) Filed: Jun. 18,2013

(65) Prior Publication Data
US 2013/0346538 Al Dec. 26, 2013

(30) Foreign Application Priority Data
Jun. 21,2012 (GB) e 1210995.5
(51) Imt.ClL
GO6F 15/16 (2006.01)
GO6F 15/167 (2006.01)
GO6F 12/00 (2006.01)
(52) US.CL
CPC ....cccee. GO6F 15/167 (2013.01); GOG6F 12/00
(2013.01)

(58) Field of Classification Search
CPC . GO6F 15/16; GOGF 17/30445; GO6F 15/167,
HO4L 67/025; HO4L 67/2857; HO4L
29/08801; HO4L 67/2842

LS Al
|

USPC coovivveeeiienee 709/213, 217; 707/603, 827
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,774,548 B2 82010 Rao etal.
7,792,885 B2* 9/2010 Piperetal. ........cc...... 707/600

(Continued)

FOREIGN PATENT DOCUMENTS

WO 03085560 A1  10/2003
OTHER PUBLICATIONS

K. Molloy et al., “Method and Model to Assess the Performance of
Clustered Databases: The Oracle RAC Case,” Proc. 2010 Computer
Measurement Group Conf., Dec. 2010, FL, p. 1-12.

(Continued)

Primary Examiner — Tesfay Yohannes
(74) Attorney, Agent, or Firm — Cantor Colburn LLP

(57) ABSTRACT

A method for managing cache memories includes providing
a computerized system including a shared data storage sys-
tem (CS) configured to interact with several local servers that
serve applications using respective cache memories, and
access data stored in the shared data storage system; provid-
ing cache data information from each of the local servers to
the shared data storage system, the cache data information
comprising cache hit data representative of cache hits of each
of the local servers, and cache miss data representative of
cache misses of each of the local servers; aggregating, at the
shared data storage system, at least part of the cache hit and
miss data received and providing the aggregated cache data
information to one or more of the local servers; and at the
local servers, updating respective one or more cache memo-
ries used to serve respective one or more applications based
on the aggregated cache data information.

12 Claims, 2 Drawing Sheets

™
\

CM1 CM2
H, M H, M
ACD.D ACD, D
T on L

CS

U/‘



US 9,152,599 B2
Page 2

(56)

7,930,481
8,719,320
8,799,209
8,886,760
8,972,799
9,037,921
2002/0004887
2004/0186861
2006/0230099
2008/0244184

References Cited

U.S. PATENT DOCUMENTS

Bl

BL*
B2 *
B2 *
BL*
BL*
Al

Al*
Al

Al*

4/2011
5/2014
8/2014
11/2014
3/2015
5/2015
1/2002
9/2004
10/2006
10/2008

Nagler et al.

Brooker et al. ............... 707/827
Bakalash et al. ... 707/603
Jogand-Coulomb et al. . 709/219
Brookeretal. .............. 714/47.2
Brookeretal. .............. 714/47.1
Kubo

Phatak ..........ccooveieiinnne 707/200
Maya et al.

Lewisetal. ....coccevvnne, 711/130

2009/0292882 Al  11/2009 Lietal.

2011/0022798 Al* 1/2011 Houetal. ... 711/118
2012/0179907 Al* 7/2012 Byrdetal. ... 713/156
OTHER PUBLICATIONS

Seung Woo Son, et al, “Topology-Aware I/O Caching for Shared
Storage Systems,” Office of Science, Aug. 2009, pp. 1-9.
Wikipedia, [online]; [retrieved on May 10, 2013]; retrieved from the
Internet http://en.wikipedia.org/wiki/Storage area network
Wikipedia,“Storage Area Network,” Apr. 2013, pp. 1-5.

* cited by examiner



U.S. Patent

LS

US 9,152,599 B2

FIG. 2.

Oct. 6, 2015 Sheet 1 of 2
A1 L5 A2
! v
CM1 CM2
H, M H, M
ACD, D ACD, D
> CC/IT
§ ~
BES
J ™
N
D CS
FIG. 1.
S100
-
\ 4 S200M <
S200H v
v S210M \X
S210H S220M
Y
S300
v
S400
v
S500



U.S. Patent Oct. 6, 2015

Sheet 2 of 2

Cs

l£,3450
8560

US 9,152,599 B2

LS

}h/SQOOHa

C:yv24a

25
S570

1GB [

S300 - S400: | [

1 MB

M

S500: ]

S121

S120

S122

FIG. 4.




US 9,152,599 B2

1
MANAGING CACHE MEMORIES

PRIORITY

This application claims priority to Great Britain Patent
Application No. 1210995.5. filed Jun. 21, 2012. and all the
benefits accruing therefrom under 35 U.S.C. §119. the con-
tents of which in its entirety are herein incorporated by ref-
erence.

BACKGROUND

The invention relates in general to the field of computer-
ized methods and systems for managing cache memories, in
particular in a storage area network (SAN) environment.

A storage area network (SAN) is a dedicated network that
provides access to consolidated, block level data storage.
Such networks are primarily used to make storage devices
(e.g., disk arrays or tape libraries) accessible to servers; so
that these devices appear as locally attached to the operating
system. A SAN typically has its own network of storage
devices, which are generally not accessible through the local
area network by other devices. A SAN does not provide file
abstraction, only block-level operations. However, file sys-
tems built on top of SANs do provide file-level access (see
e.g., Wikipedia contributors, ‘Storage area network’, Wikipe-
dia, The Free Encyclopedia, 21 May 2012).

More generally, there are several known environments
wherein several, local application servers (i.e., using respec-
tive cache memories for serving respective applications), are
configured to interact with a shared data storage system, so
that they can access data stored on the shared storage pool.
How such systems manage cache memory is typically imple-
mented as follows: local cache misses are reported by the
local servers to the shared data storage system; the latter
provides the missing data, in response; and it further consoli-
dates and uses the cache miss data received for caching/
tiering purposes, i.e., data placement purposes.

This, for example, is what done in a SAN environment.
Clearly, the shared data storage system plays a central role; it
is therefore sometimes referred to as a “central system”.

In atypical SAN environment, multiple application servers
are connected to the shared data storage system via a standard
block-level access interface (data are typically accessed in
fixed size blocks ofe.g., 512 to 528 bytes). The shared storage
pool is managed by a SAN storage server, such as the IBM
DS8000. The SAN storage server often uses large caches to
increase system throughput and to reduce access latency,
while, at the same time, each application server may use
caches as well to increase the application agility in terms of
1/0 efficiency and to reduce consumption ofthe SAN server’s
bandwidth. As it can be realized, the caches at the application
servers (also referred to as “local caches” hereafter) and the
cache at the SAN storage server operate independently: there
is no coordination among them. The same conclusion gener-
ally holds for more general system architecture as described
above, i.e., wherein local application servers interact with a
shared data storage system, to access data stored on the shared
storage pool.

SUMMARY

In one embodiment, a method for managing cache memo-
ries includes providing a computerized system comprising a
shared data storage system (CS) and several local servers,
wherein the shared data storage system is configured to inter-
act with the local servers, the local servers serve applications

10

30

40

45

60

2

using respective cache memories, and each of the local serv-
ers accesses data stored in the shared data storage system;
providing cache data information from each of the local serv-
ers to the shared data storage system, the cache data informa-
tion comprising cache hit data representative of cache hits of
each of the local servers; and cache miss data representative
of cache misses of each of the local servers; aggregating, at
the shared data storage system, at least part of the cache hit
data and the cache miss data received into aggregated cache
data information and providing the aggregated cache data
information to one or more of the local servers; and at the one
or more of the local servers, updating respective one or more
cache memories used to serve respective one or more appli-
cations based on the aggregated cache data information pro-
vided.

In another embodiment, a method for managing cache
memories, includes providing a local server serving an appli-
cation using a cache memory, the local server configured to
interact with a shared data storage system, the shared data
storage system configured to interact with several local serv-
ers that access data stored in the shared data storage system;
atthe local server, making cache data information available to
the shared data storage system, the cache data information
comprising cache hit data representative of cache hits of the
each local server, and cache miss data representative of cache
misses of the each local server; receiving from the shared data
storage system aggregated cache data information obtained
by aggregating cache hit data and cache miss data obtained
from several local servers; and updating the cache memory
based on the received aggregated cache data information.

In another embodiment, a method for managing cache
memories, includes providing a computerized system com-
prising a shared data storage system configured to interact
with several local servers that serve applications using
respective cache memories, wherein the local servers
accesses data stored in the shared data storage system, upon
request of the applications, at the shared data storage system,
receiving from each of the local servers, in any order, cache
hit data representative of cache hits of the each local server,
and cache miss data representative of cache misses ofthe each
local server; aggregating at least part of the cache hit data
received and the cache miss data received into aggregated
cache data information; and providing the aggregated cache
data information to one or more of the local servers for sub-
sequent updating of respective cache memories used to serve
respective applications based on the aggregated cache data
information.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 schematically represents a computerized system
adapted to implement methods according to embodiments of
the invention;

FIG. 2 is a flowchart representing high-level operations as
involved in embodiments;

FIG. 3 is a diagram showing components and operations
involved in a local cache population logic and population
mechanism, according to embodiments; and

FIG. 4 is a diagram focusing on particular aspects of'a local
cache population logic as in FIG. 3, according to embodi-
ments.

DETAILED DESCRIPTION

According to a first aspect (i.e., a global aspect), the present
invention is embodied as a method for managing cache



US 9,152,599 B2

3

memories, the method including providing a computerized
system comprising a shared data storage system and several
local servers, wherein: the shared data storage system is con-
figured to interact with the local servers; the local servers
serve applications using respective cache memories; and each
of the local servers accesses data stored in the shared data
storage system. The method further including providing
cache data information from each of the local servers to the
shared data storage system, the cache data information pro-
vided comprising: cache hit data representative of cache hits
of each of the local servers; and cache miss data representa-
tive of cache misses of each of the local servers; aggregating,
at the shared data storage system, at least part of the cache hit
data and the cache miss data received into aggregated cache
data information and providing the aggregated cache data
information to one or more of the local servers; and at the one
or more of the local servers, updating respective one or more
cache memories used to serve respective one or more appli-
cations based on the aggregated cache data information pro-
vided.

According to a second aspect (i.e., as seen from a local
server), the invention is embodied as a method for managing
cache memories, comprising: providing a local server serving
an application using a cache memory, the local server being
further configured to interact with a shared data storage sys-
tem, the latter configured to interact with several local servers
that access data stored in the shared data storage system, the
method further comprising, at the local server: making cache
data information available to the shared data storage system,
the cache data information comprising: cache hit data repre-
sentative of cache hits of the each local server; and cache miss
data representative of cache misses of the each local server;
receiving from the shared data storage system aggregated
cache data information obtained by aggregating cache hit data
and cache miss data obtained from several local servers; and
updating the cache memory based on the received aggregated
cache data information.

According to a third aspect (i.e., as seen from the shared
data storage system), the invention is embodied as a method
for managing cache memories, comprising: providing a com-
puterized system comprising a shared data storage system
configured to interact with several local servers that serve
applications using respective cache memories, wherein the
local servers accesses data stored in the shared data storage
system, upon request of the applications, the method further
comprising, at the shared data storage system: receiving from
each of the local servers, in any order: cache hit data repre-
sentative of cache hits of the each local server; and cache miss
data representative of cache misses of the each local server;
aggregating at least part of the cache hit data received and the
cache miss data received into aggregated cache data informa-
tion; and providing the aggregated cache data information to
one or more of the local servers for subsequent updating of
respective cache memories used to serve respective applica-
tions based on the aggregated cache data information.

Aggregating further comprises sorting the cache hit data
and the cache miss data according to occurrences of the cache
hit data and the cache miss data, such that a structure of the
aggregated cache data information obtained reflects the sort-
ing.

According to embodiments, updating a cache memory is
carried out asynchronously with respect to requests to the
cache memory from a respective application served by a
respective local server.

Updating a cache memory comprises selecting subsets of
data in the aggregated cache data information and populating
the cache memory according to the selected subsets of data.

20

35

40

45

55

60

4

In exemplary embodiments, updating a cache memory
comprises: selecting at least two distinct subsets of data in the
aggregated cache data information; instructing to populate,
without delay, the cache memory with data corresponding to
one of the distinct subsets of data; and instructing to place
data corresponding to another one of the distinct subsets of
data in a watch-list, and the method further comprises: moni-
toring data in the watch-list to determine data to be populated
in the cache memory; and populating the data accordingly
determined in the cache memory.

In embodiments, the method further comprises: instructing
to place additional data corresponding to local cache miss
data in the watch-list, the local cache miss data being repre-
sentative of cache misses collected by the local server inde-
pendently from the aggregated cache data information, such
that both the local cache miss data and the data corresponding
to the second one of the two distinct subsets of data can be
monitored to determine which data is to be populated in the
cache memory.

The watch-list comprises a circular list of cached objects
and monitoring data in the watch-list comprises evicting an
oldest cached object, which has not been requested to be
accessed during a given period of time, from the circular list.

In embodiments, the method further comprises filtering
data that already reside in cache memory before populating a
cache memory with such data.

The aggregated cache data information may for instance be
aggregated at a granularity larger than a granularity used at
any subsequent updating of cache memory.

According to other aspects, the invention is embodied as a
computerized system, comprising one or more components
as described above (i.e., at least a shared data storage system
and/or a (local) server), the system configured to perform
each of the operations performed by the one or more compo-
nents, in a method according to any one of the above embodi-
ments.

Finally, according to still another aspect, the invention can
be embodied as a computer program product for managing
cache memories, the computer program product comprising a
computer-readable storage medium having computer-read-
able program code embodied therewith, the computer-read-
able program code configured to implement each of the
operations of a method according to any one of the above
embodiments.

Methods, systems and components thereof embodying the
present invention will now be described, by way of non-
limiting examples, and in reference to the accompanying
drawings.

The following description is structured as follows. First,
general embodiments and high-level variants are described
(sect. 1). The next section addresses more specific embodi-
ments and technical implementation details (sect. 2).

1. General Embodiments and High-level Variants

In this section, general aspects of the invention are
described, which concern methods for managing cache
memories. Since the present invention concerns interactions
between clients LS1, LS2 and a central server CS, i.e., within
a client-server architecture, see FIG. 1, different descriptions
of the invention can be given, depending on the viewpoint
adopted. Thus, in the following, general aspects of the inven-
tion are first described, as embodied in a global system com-
prising both the clients and the server CS. Then, aspects of the
same invention as seen from the viewpoint of a client or the
server CS are discussed. Of course, these aspects differ only
in the viewpoint adopted (i.e., global or as seen from one of
the components of FIG. 1), and refer to one and a same
invention.



US 9,152,599 B2

5

First, referring to FIGS. 1-2, the method generally operates
in a computerized system 1 that comprises, in a global point
of view, both the server and the clients, namely a shared data
storage system CS and several local servers LS1, L.S2. Thus,
formally speaking, a first block S100 of the method accord-
ingly consists of providing a computerized system 1 such as
illustrated in FIG. 1. In this system 1, the shared data storage
system CS is configured to interact with several local servers,
i.e., at least two local servers L.S1, L.S2 in a minimal configu-
ration. The latter serve applications Al, A2 using respective
cache memories CM1, CM2. Each of the local servers may
access data D stored in the shared data storage system. The
data D is typically requested to be accessed by a local server
upon request of the application it serves, just like in SAN
environments, to which the present invention typically
applies. The shared data storage system CS shall also be
referred to as a “central system” below, for obvious reasons.
This system CS is typically managed by a SAN storage
server. Thus, both the local and central systems typically are
“servers”. The central system CS acts as a data server for the
local servers LS1, LS2, while the local servers LSn serve
respective applications An, using notably respective cache
memories CMn. For the sake of disambiguation, the central
system CS is referred to as a “system” while the local servers
are referred to as “servers”. Note that, in a minimal configu-
ration, the computerized system comprises at least the central
system CS, two local servers [.S1, L.S2, serving one or more
applications, and using two respective cache memories (or
more). It shall, in fact, be apparent to the skilled person that
one local server may serve more than one application and this,
using more than one cache.

Next, a second block consists of providing cache data
information from each of the local servers LS1, L.S2 to the
central system CS. The cache data information typically con-
sists of cache data statistics Like in prior art methods, such
statistics concern cache misses M, i.e., data representative of
cache misses of each of the local servers. A “cache miss” is
known per se: it refers to a data access request that was not
served from the cache memory CMn because some or all of
the corresponding data were not cached at the time of the
request.

However, unlike prior art methods, the cache data informa-
tion that is forwarded to the central system in the present
invention further includes cache hit data H, i.e., representative
of cache hits of each of the local servers. A “cache hit” is also
known per se, it corresponds to given data cached in a cache
memory used by one or more applications and served in
response to a data access request from that cache memory.
The particular case of partial hits will be discussed later.
Cache hits and misses are typically sent at different times,
since cache misses likely need immediate response, contrary
to cache hits, a thing that will be developed later too. Thus,
one understands that the cache hit data are provided indepen-
dently from the cache miss data, as illustrated by blocks
S200H and S200M in FIG. 2.

What the central system CS does next is to aggregate, block
S300, at least part of the cache hit data H and the cache miss
data received into aggregated cache data information ACD.
The aggregated cache data information may aggregate the
actual data to be later populated in the local cache memories
or, more simply, data identifiers. Once aggregated, the cache
data information ACD can then be provided to one or more of
the local servers, block S400. Of course, the local cache
misses M, cache hits H and data D accessed shall likely differ
from LS1 to LS2.

Finally, a local server shall proceed to update (block S500)
the cache memory that it manages, based on the aggregated

20

35

40

45

50

55

60

65

6

data ACD received, e.g., as soon as possible upon receiving
the aggregated data from the central system.

Accordingly, local cache performance can be improved,
owing to the more “global” knowledge captured in the ACD,
i.e., knowledge of cache misses and hits that occur at several
applications (including applications other than a particular
local application that shall be provided with ACD). Thus, a
given local cache shall be updated based on data which can
likely be relevant to that given local cache, since they proved
to be relevant at other locations. The global data are all the
more relevant when some correlation exists between cache
data relevant to one location and cache data relevant to
another location. This is notably the case if the same applica-
tion runs on several clients and touches the same data from the
several clients. This is also the case when an application
migrates from one server to some other (e.g., for failover). On
the contrary, in the prior art systems, the local caches do not
“see” the consolidated workload from all application servers
and thus local caching decisions cannot be optimal, or at least
not from a central viewpoint.

Note that if, by construction of blocks S200-S500, the
aggregated data ACD includes global knowledge of cache
data information, this does however not prevent the aggre-
gated data ACD provided to a local server to be tailored, i.e.,
made specific forthat server’s. Namely, ACD data provided to
one local server (e.g., LS1) may include cache data informa-
tion captured from both LS1 and L.S2, while still putting
emphasis on data as primarily consolidated for LS1. This
shall be developed later.

The invention is advantageously implemented in a SAN
environment, where the central system CS makes use of a
large cache and/or tiering mechanism. In addition, use is
made of faster memory devices for storing cache, e.g. flash
based SSDs, at the central system CS and/or at the local
servers LS1, LS2.

So far, what has been described concerns general aspects of
a method as seen from a global point of view. Now, the same
method can be decomposed into operations as performed at
one of the other of the involved components [.S1, L.S2, CS.

For example, from the viewpoint of a local server L.S1, the
method comprises the following operations: A local server
LS1 shall:

make the cache data information available to the central
system CS; the cache data information may for instance be
sent or fetched, depending on the global system configura-
tion;

then receive from the central system CS aggregated cache
data information ACD, obtained as described above; and

subsequently update its cache memory based on the
received ACD.

Similarly, from the viewpoint of the central system CS, the
method comprises:

receiving (or fetching) cache hit data H and cache miss data
M from each of the local servers L.S1, L.S2, in any order
(blocks S210H, S210M);

aggregating at least part of the cache hit data received and
the cache miss data received into aggregated cache data infor-
mation ACD, block S300; and

providing in turn the ACD to one or more of the local
servers L.S1, 1L.S2, block S400, for subsequent update of the
cache memories CM1, CM2.

Performances of the above methods can be improved if the
structure of the ACD provided to the local servers includes
information as to the relevance of the data. To that aim, and
referring to FIG. 4, the ACD aggregation block (i.e., block
S300 in FIG. 2) may comprise data sorting operations, in
embodiments. More precisely, the cache hit data and the



US 9,152,599 B2

7

cache miss data may be sorted according to occurrences of the
cache hit data and the cache miss data. The occurrences can
for instance be computed based on local records, or, from
previous consolidation works at the central server CS. Thus,
the structure of the aggregated cache data information ACD
may reflect this sorting, possibly implicitly. For example, in
FIG. 4, the data are sorted in ascending order of their occur-
rences, e.g., the hottest data (dotted rectangular segments in
the ACD data of F1G. 4) are located at one end of the ACD data
structure provided to the local servers.

Note that “occurrences” is to be understood in a broad
sense; this can for instance reflect a frequency of occurrence
of'such data. It more generally reflects the propensity to occur
over one or more time periods; it can simply be the history of
the data. In this regard, it is noted that the process might for
example need to take into account different time intervals and
to correlate the cache data H, M to respective time intervals in
order to compare relevant period of times, i.e., periods of time
that are comparable, and to deduce comparable occurrences
for the cache data H, M, prior to aggregating them into the
ACD structure of FIG. 4. One sometimes speaks of cache data
“consolidation”, when this process is carried out for cache
misses alone. In present embodiments of the invention, the
originality of this optional block stems from the fact that both
cache misses and cache hits are consolidated, which cache
misses and hits pertain from several caches/applications/
servers.

In addition, while the cache misses are typically immedi-
ately reported to the central server, cache hits need not be;
they can for instance be collected locally and periodically
reported, whence necessary adjustment to the cache misses
frequencies. In variants, cache hits could be reported on-the-
fly or still, once a quantitative threshold for cache hits has
been reached at a local server.

Now, many advantageous design options can be contem-
plated. For example, the exchange of statistics between the
local servers and the central system CS can be executed
in-band or out-of-band. Also, when consolidating cache data,
cache data for application requests pertaining to small bits of
data may be grouped together in order to subsequently put
data on SSDs; the cache data for requests pertaining to large
bits may be grouped as well: data for larger requests are better
placed on HDDs.

Depending on the time intervals considered, frequencies of
occurrence of the cache data information ranges from an
almost instantaneous frequency to an equivalent average fre-
quency for an effective period of time, etc. Anyhow, what
resorts from simulations performed by the present inventors
is that sorting the ACD and structuring the ACD accordingly
allows for improving long-term relevance of cache data, i.e.,
the local caches CM1, CM2 can be subsequently updated so
asto cache data which have a better chance of being requested
by therespective application A1, A2 over longer time periods.

The cache memory updates are generally referred to by
block S500 in FIG. 2. In FIGS. 3 and 4, the cache memory
updates are decomposed into several subblocks, namely S11,
S1la. S11b. S121, S122, S23, S450, and S550-S580, which
subblocks are all implemented by a local server, or compo-
nents thereof. These components decompose into a popula-
tion logic 10 and a population mechanism 24. The former
includes components 11, 12, 124. 21, 22, 23. The population
mechanism involves a data mover 24, interacting with a
cache, e.g., a direct attach storage (DAS) cache memory 26
and a cache directory 25. A cache memory CM1, CM2 as
meant in FIG. 1 comprises a minima a memory 26 (e.g., a
DAS cache memory) as depicted in FIG. 3, also referred to as
“CM”.

10

25

40

45

55

8

Referring to FIGS. 3 and 4 altogether: the cache memory
updates are carried out asynchronously. Namely, updates to a
given cache CM1 are carried out asynchronously with respect
to user requests to the cache memory CM1 from the corre-
sponding application Al, i.e., served by the corresponding
local server LS1. For example, the cache population mecha-
nism can be governed by an asynchronous execution unit
such as illustrated in FIG. 3, e.g., a dedicated software thread.
This means that actual cache population blocks can be oper-
ated outside of the critical data path, i.e., the path containing
blocks needed to deliver data to the applications from either
the local cache or the central system. Thus, the update mecha-
nism does not adversely impact the normal operation of the
local caches.

More in details, cache memory updates typically involve
data subset selection, i.e., subsets of data in the ACD provided
to a local server are selected and the corresponding cache
memory is then populated according to the selected subsets,
as notably captured by the blocks S11, S115. S121 in FIGS.
3-4. For instance, subsets of data in the received ACD may be
selected, e.g., data subsets having the largest occurrences (or
“hot data” for short), to directly populate the cache memory
therewith (see block S11, FIG. 3 or 4). Concerning the
remaining data subsets, they may be e.g., discarded, dropped,
or still, monitored. In particular, some of the data subsets may
be placed in a watch-list 12 for subsequent monitoring, as to
be discussed below.

The data subset selection can be regarded as filtering. For
data subset selection, use is advantageously made of the ACD
structure, which can implicitly tell which data is hot, which
data is not. In variants, some cache data can be explicitly
marked as “must-have”. Similarly, some data in the ACD
could be marked as “must-not-have”. Thus, a local population
logic may proceed to select the data subsets according to their
implicit or explicit ratings. For example, local server may not
filter the “must-haves” (or at least not immediately); it may
instead filter remaining data or could even ensure that “must-
not-haves” will not be cached. Many other, intermediate strat-
egies may be designed, as one skilled in the art may appreci-
ate.

Now, since the data identified in the ACD may correspond
to data already residing in cache, several stages of additional
filters are advantageously implemented:

First, one may filter data already in cache out of the ACD as
soon as it is received at a local server. For example, upon
receiving the ACD, e.g., an ordered list of data extents, each
corresponding to a 1 MB segment as in FIG. 4, a local cache
logic 10 will first filter data fragments (or data fragment
identifiers) out of those fragments that are already in cache, as
illustrated in FIGS. 3 and 4, block S115.

More generally, one may filter data already in cache at
several points, e.g., at the filter 11 and/or at the data mover 24,
etc.

In fact, what matters (when willing to filter out those data
already in cache) is to ensure that those data are filtered before
populating the cache memory therewith.

At present, different, concurrent routes can be contem-
plated for cache memory population. For example, two or
more distinct subsets of data may be identified in an incoming
ACD. Asillustrated in FIGS. 3-4, the population logic 10 may
instruct to populate (block S11), without delay, the cache
memory CM1 with data corresponding to one of the distinct
data subsets identified, while it instructs (block S11a) to place
data corresponding to another one of the distinct data subsets
identified in a watch-list 12. Data placed in the watch-list 12
can be subsequently monitored (block S120) to determine
which data is to be populated S121 in cache. “Without delay”



US 9,152,599 B2

9

means immediately or without further inquiry, e.g., within the
minimal reasonable time allowed by logic and circuits. For
instance, this might be governed by a maximum rate at which
populations are allowed to be performed. In other words, the
“hottest” data can be immediately populated in cache, while
remaining data can be placed in “observation” in the watch-
list, and later populated in cache if necessary.

In fact, several data subsets can be identified in an incom-
ing ACD. For example, as illustrated in FIG. 4, three types of
subsets of data can be identified: (i) a first one (striped seg-
ments), which are immediately identified as corresponding to
data already cached, and which are accordingly discarded,
block S115; (ii) a second one (dotted segments) correspond-
ing to hot data, to be immediately populated in cache (block
S11) and (iii) a third one (white segments) corresponding to
less hot data, to be placed in the watch-list 12. As it can be
realized, subsets (ii) and (iii) above are most efficiently pro-
cessed and managed if ACD data subsets (i) are first filtered to
remove data already residing in cache.

As further illustrated in the cache update logic 10 and the
population mechanism 24-25 of FIGS. 3-4, additional data
may be placed in the watch-list 12, block S200Ma. These data
may for example correspond to local cache miss data, e.g.,
local read miss or LRM, i.e., data which are representative of
cache misses as collected by a local server and this, indepen-
dently from the ACD received. Accordingly, both the local
cache miss data LRM and a data subset of the ACD can be
placed in the watch-list and monitored (block S120) to deter-
mine which data is to be later populated in cache, block S121.
This allows for reacting more accurately and faster to work-
load changes on the local servers. In this respect, a local client
can operate more fine-granular fragments instead of extents
(e.g., 1 MB instead of 1 GB, as illustrated in FIG. 4). Now, if
a single fragment appears to be “hot” in a whole extent, the
hotness of the extent to which that fragment belongs and
which is observed at the central system CS may not be high
enough for it to be marked as hot (or, even, to be aggregated)
in the ACD. Yet, this “hot” fragment may independently be
added to the watch-list for in-situ monitoring, making it pos-
sible for it to be subsequently populated in cache. Other
reasons for which the central system might not “see” enough
cache misses are that the particular data is only accessed by
one local server, or it had not been seen in the past, hence the
historical data has not enough weight. In addition, it typically
takes some time until ACD is provided by the central system
to the local servers. Thus, independently feeding the LRM to
the watch-list 12 for subsequent monitoring can help to
improve reactivity and/or sensitivity.

Concerning now how the data in the watch-list are moni-
tored, this can notably be carried out using a circular list 12a
of cached objects. In particular, an efficient algorithm con-
sists of evicting an oldest cached object from the circular list
12a. provided that this oldest cached object has not been
requested to be accessed during a given period of time, e.g., a
last clock round. This can for example be implemented using
a modified version of the Clock algorithm. In the present
context, this algorithm can be implemented such as to keep a
circular list of cached objects in memory, with an iterator (the
“clock hand”), pointing to the oldest page in the list. For each
page the algorithm maintains a reference bit, which when set
denotes that the page has been accessed during the last Clock
round. When a cache miss occurs and if there is no free space
in the cache (i.e., the cache is full), the reference bit is
inspected at the hand’s location. If that bit is O (i.e., “unset™),
the cached object to which the “hand” points is evicted and
the empty page frame can thus be allocated to an incoming
page. Otherwise, the reference bit is cleared and the clock

10

15

20

25

30

35

40

45

50

55

60

65

10

hand is incremented, so that it points to the next page in the
circular list. The process is repeated until a “victim” page is
found. In variants, other page replacement algorithms (First
In, First Out (FIFO), Second-Chance, etc.) could be used.
However, the above solution (modified Clock algorithm) is an
efficient version of FIFO (e.g., more efficient than Second-
Chance) because cached objects do not have to be continu-
ously shifted in the list.

So far, embodiments of the invention have been described
mainly in terms of method operations. However, according to
other aspects thereof, the invention can be embodied as a
computerized system, comprising one or more components
as described above (i.e., at least a shared data storage system
(or a “central system” for short) and/or a local server). Gen-
erally speaking, such a computerized system can be suitably
configured to perform the method operations imparted to the
components.

For example, this computerized system may restrict to
shared data storage system CS. The latter may notably com-
prise:

areceiving unit (not shown) configured to receive cache hit
data and cache miss data from each of the local servers LS1,
LS2 (independently or not);

an aggregation logic unit (not shown), configured to aggre-
gate at least part of cache hit data received and cache miss data
received into the ACD; and

an interface (not shown) configured for enabling the ACD
to be sent (each of) the local servers LS1, L.S2. As touched
earlier, the aggregation may be customized, depending on the
target server.

Next, this computerized system may similarly restrict to a
local server. The latter may notably comprise an interface (not
shown) for making cache data available to the central system
CS and a receiver unit for receiving aggregated cache data
ACD. It may further comprise a cache population logic 10 and
cache population tools 24 such as exemplified in FIGS. 3-4.

Of course, the computerized system may comprise both a
shared data storage system CS and one or more local servers
LS1, LS2, as described earlier.

Finally, the invention can also be embodied as a computer
program product, comprising a computer-readable storage
medium having computer-readable program code embodied
therewith, the program code configured to implement each of
the operations of the methods described above. Details of the
program code, and algorithmic aspects thereof shall be given
in the next section.

The above embodiments have been succinctly described in
reference to the accompanying drawings and may accommo-
date a number of variants, described in reference to any aspect
ofthe invention. Inembodiments, several combinations of'the
above features may be contemplated.

Accordingly, a computerized system 1 according to
embodiments of the invention may notably comprise:

alocal server LS1 thatuses a fast device as cache, e.g. flash
based SSD;

a shared data storage server CS providing back-end stor-
age, that uses multiple storage media;

atiering module T on the storage server to identify hot data
and to store hot data on a fast storage medium.

Another example is that of a computerized system 1 com-
prising notably: one or more local servers LS1, [LS2 and a
central tiered storage system CS, wherein the central system:

maintains coarse-grained global statistics (based on the
consolidated workload observed and aggregated local statis-
tics from local servers),

places data to storage media having different performance
characteristics based on those



US 9,152,599 B2

11

coarse-grained global statistics, and

provides coarse-grained cache statistics ACD to individual
local servers based on the global statistics,

and wherein each of the local servers:

maintains fine-grained local statistics (based on locally
observed workloads); and

populate the local cache according to fine-grained local
and coarse-grained global statistics.

Detailed examples of exemplary embodiments are dis-
cussed in the next section.

2. Specific Embodiments and Technical Implementation
Details

The specific embodiments described below propose a
mechanism to coordinate local cache servers and the central
cache in a SAN environment. The aim is to improve cache
efficiency by leveraging the combination of short- and long-
term statistics. The local caches report cache hit statistics
(e.g., aggregated to an appropriate granularity, e.g., extent
level for use by the central system) to the central system
periodically and the central system consolidates the local
cache hit statistics together with its own workload statistics
(referring to cache misses of local servers, and also historical
data corresponding to cache hits and misses of local servers),
and makes the consolidated statistics available to each local
servers. The consolidated statistics returned to local servers
can therefore be tailored for a specific server. Each local
server then uses the consolidated statistics to improve local
cache performance. The local cache achieves this by leverag-
ing the ability to combine mandatory cache populations from
central statistics with selective cache population based on
local and central statistics.

The overall architecture is shown in FIG. 1 and has already
been discussed in the previous section. The double arrows
between local servers LS1, LS2 and the central system CS
represent the exchange of statistics which can happen in a
periodical or sporadic manner.

The central system can for instance use any cache mecha-
nism CC as known in SAN storage servers. It can also use a
tiering T mechanism, or even a combination CC/T of cache
and tiering mechanisms. Yet, an automated tiering mecha-
nism is advantageously used (e.g., the IBM EasyTier mecha-
nism) to allocate hot data to faster storage device (e.g., SSD,
Flash) and cold data to HDDs or to a fast HDD tier and a slow
HDD tier, respectively. The central system can arrange data
on the back-end storage in tiers in order for the data to be
better optimized for the workload. The cache itself does not
comprise a tier, and tiering refers to rearranging data on the
back-end storage. As known, back-end storage refers to the
actual persistent storage media, e.g., HDDs, where actual data
is stored persistently.

In the following, the terminology “central cache” refers to
the cache memory of the central system, i.e., the shared data
storage system CS. By extension, it may refer to operations
governing the central cache and thus to the central system
itself. Similarly, “local cache” refers to the cache memory
managed by a local server and, by extension, it may refer to
operations governing the local cache and thus to the local
server itself.

Because all local cache misses of workloads will eventu-
ally go to the SAN server for fetching the corresponding data,
there is no need for the local servers to report statistics on
cache misses (beyond the cache miss requests that are “nor-
mally” addressed to the central server). However, in the prior
art systems, the local cache hits served from the local caches
are not seen in the central server. Therefore, in present

10

15

20

25

30

35

40

45

50

55

60

12

embodiments, the local servers are now responsible for col-
lecting statistics on cache hits and report those to the central
system.

Recall that since the central system will see all cache
misses of each local cache, the central system is capable of
combining the cache misses and reported cache hit statistics
for each local cache. A similar consolidation mechanism as
used for data/data identifiers corresponding to cache misses
and data/data identifiers corresponding to cache hits can be
used. The central system then makes these statistics available
for each local server. This can either be initiated by the local
or the central cache:

In a pull model, local servers will initiate a communication
to the central system, either for sending the cache-hit statistics
or for asking for the consolidated statistics of the central
cache.

Ina push model, the central system will periodically broad-
cast the consolidated statistics to the local servers.

The exchange of statistics between the local servers and the
central system can be executed “in-band” or “out-of-band”.
In-band means that the statistics exchange is embedded into
the data path through which the application server reads or
stores data, e.g. Fibre Channel or SCSI. Out-of-band means
that the statistics exchange uses an independent communica-
tion channel between the application servers and the SAN
storage server.

Often, local caches are designed to exploit local and tem-
poral locality of workloads. With the central system consoli-
dating statistics gathered from all local caches and making
them available to each local cache, the cache performance of
local caches can be greatly improved, because these statistics
represent a central as well as longer-term view on which
extents of data are worthy of caching (i.e., the “hot” extents).
One possibility to improve local cache performance is to add
those extents of hot data as indicated by the CS’s statistics
unconditionally into the local cache. It is noted that local
caches may report cache-hit statistics at a different frequency
than the frequency at which the consolidated statistics are
received from the central cache.

In the following, local cache designs are disclosed, which
utilizes the central statistics to improve caching performance.

In exemplary local cache design embodiments, the local
cache reports cache-hit statistics, e.g. the hit count per extent,
to the central system and receives consolidated statistics for 1
GB-extents of data in a periodical manner, e.g., every 15
minutes. The local cache may use, e.g., SATA or SAS flash
SSDs or PCl-e flash cards as the storage medium on which the
cached data will reside. Suppose that the local flash cache
organizes the cached data in 1 MB-fragments, then the size of
cached entities is 1 MB.

Typically, extents (e.g., 1 GB of data) refer to a number of
consecutive fragments (of fixed size). A fragment refers to a
fixed size fraction of an extent and to a fixed size multiple of
ablock. The block size is fixed ab initio in the system. Each of
the fractions is typically determined a priori and is therefore
not dynamic. Extents and fragments may be the data to be
populated next in the local caches (if necessary). Extent/
fragment identifiers are used, as described in the previous
section, instead of the to-be-populated data. For example
identifiers are used at the level of the local cache population
logic 10, FIG. 3. In all cases, extent/fragment unambiguously
refer to the data to be populated. The distinction between
extent/fragment of data and identifiers of extent/fragment of
data will accordingly not be made in the following, as they
refer to the same data.

Note that in the prior art, an extent is sometimes defined as
a contiguous area of storage in a computer file system,



US 9,152,599 B2

13

reserved for a file. In the present case, “extents” are not
necessarily reserved for files but still correspond to a contigu-
ous area of storage space (yet not in a computer file system but
in a memory storage system).

In the case of a read-only local cache, i.e., one that only
caches unmodified data, when receiving a user read request,
the local cache is first queried. If it is a cache hit, data can be
read from the local flash cache and sent back to the applica-
tion. Else (cache miss), the request is forwarded to the SAN
storage server. Upon receiving the requested data from the
SAN storage server, the data is sent back to the requesting
application, and may or may not be populated into the local
flash cache depending on its data size or its hotness. Upon a
user write request, the old copy of the data in the local cache
(if present) is invalidated, and the data is written to the SAN
storage server. Clearly, it can happen that for a given read
request, only some of the requested data may be found in the
cache, that is, part of the request may be a cache hit and part
of it a cache miss. This case can be referred to as a “partial
hit”. In such a case, the local cache may either decide to serve
the hit data from the cache and the missed data from the SAN,
or serve all the data from the SAN—such a decision would be
governed by a strategy, which is referred to as a partial hit
strategy. In any case, the aforementioned principles for serv-
ing hits and misses still hold for partial hits and partial misses,
respectively, since a partial hit can be processed as a miss or
as a complementary miss and hit.

As described in the previous section, most of the cache
population operations are governed by an asynchronous
execution unit 10 (e.g., a dedicated software thread). This
means that the actual cache population operations are oper-
ated outside of the critical data path. FIG. 3 shows the overall
procedure of asynchronous logic population involving vari-
ous components of the local cache administration, notably the
cache population logic 10 (the latter including filter 11,
watch-list 12, queues 21, 22 and scheduler 23), data mover
24, direct attach storage (DAS) flash cache 26, and cache
directory 25.

The hot list ACD received at block S400 and local read
misses LRM received at S200Ma are respectively sent to the
filter 11 and watch-list 12. Based on the hot1ist ACD and local
read misses LRM received, the population logic 10 generates
a sequence of cache population requests (blocks S11, S121).
The cache population requests are sent to two queues 21, 22,
which are processed by the data mover 24 asynchronously, as
discussed in the previous section. Also, the queues are pro-
cessed at a lower priority and/or at limited bandwidth com-
pared to normal user read/write requests. The two queues may
be served with a strict priority scheduler 23. Yet, in variants,
only one queue could be used instead. However, having two
queues brings data more likely to be hit in the future faster into
the cache and makes it easier to manage requests with high
priority, as the high-priority requests can be placed in one
queue and lower-priority requests can be placed in the other
queue. Next, the data mover 24 will read the data retained for
cache population from the SAN storage server CS (blocks
S450) and store it on direct attach storage (DAS) cache 26
(block S550); the cache directory 25 is accordingly updated,
block S560. The cache directory 25 may otherwise be
updated whenever the local server LS confirms a local read
hit, block S200Ha. As explained earlier, the filter 11 may
proceed to filter out those data already in cache, block S115.
see also FIG. 4. While the hottest data fragments are
instructed to be directly populated in cache (S11), the less hot
data fragments are sent to the watch-list 12, block S11a.

Thus, the SAN storage server CS is needed on several
occasions: a first time (block S400) to provide the aggregated

10

15

20

25

30

35

40

45

50

55

60

65

14

cache data information ACD, i.e., the global statistics, and a
second time (S450) to query the actual data corresponding to
those data retained for cache population, if needed. Indeed, in
the embodiment of FIG. 3, the population logic 10 makes
decisions based on data identifiers instead of actual data,
making block S450 necessary in that case. This makes it
possible to markedly reduce the quantity of ACD data for-
warded to local servers, as not all of the data identified in the
ACD data shall be locally cached. Of course, in variants,
actual data could be sent together with the ACD, in which case
blocks S450 would not be necessary anymore. Finally, the
system CS is also needed to respond to “usual” cache miss
requests from local servers; this point is not explicitly shown
in the drawings but the corresponding operations are similar
to blocks S450, S550 and S560 in FIG. 3.

FIG. 4 shows a detailed procedure for a local server that
uses central statistics ACD, i.e., the hot extent list ACD sent
by the SAN storage server CS, to make cache population
decisions. As illustrated in FIG. 4, the SAN storage server CS
will generate an ordered list of extents ACD, i.e., wherein data
extents are sorted according to their hotness. This is achieved
by combining current and past cache hits as well as cache
miss statistics. Each of the extents in the ACD represents a list
of consecutive fragment identifiers that might later be popu-
lated or not. Upon receiving the ordered list of hot extents
ACD, the local cache will first filter fragment identifiers out of
those fragments that are already in the cache, i.e., already
present in the cache or in the process of population, block
S115. The left-over fragment identifiers (i.e., identifiers of
non-resident fragments) likely include a few “very hot” frag-
ment identifiers (dotted rectangular segments): these are
directly sent (block S11) to the population queue 21. Queues
21, 22 of FIG. 3 are served with a strict priority scheduler 23.
The population logic execution unit 10 will take and execute
those population requests asynchronously.

There are several possible mechanisms to determine the
number of fragments that are ‘very hot’; the amount of very
hot fragments is variable. It would need to be adjusted if for
example the data in the advice list ACD is entirely due to a
predicted or application initiated event, in which case it is just
needed to populate the fragments regardless of metrics or
workload. Note that such a fragment identifier could already
be in the population watch list. In that case it is beneficial to
remove it from the watch list. The remaining less hot frag-
ment identifiers are inserted into the population watch list 12,
operated by a modified version of the Clock algorithm, to find
out fragments that are worthy of population, i.e., according to
certain rules.

In addition and as already touched earlier, there can other
streams (S200Ma) of fragment identifiers that may be added
into the population watch list 12, e.g., any fragment identifier
LRM that has recently seen a read miss.

In further detail, a reference pseudo-hit count C may be
kept for each fragment identifier in the watch list 12. The
population watch-list can be managed as follows: upon arrival
of a fragment identifier at the population watch-list, it is first
checked whether the fragment identifier is already in the
population watch-list or not.

This is independent whether the fragment identifier came
from the ordered list of hot extents or resulted from a read
miss or another source. Hence,

If the fragment identifier is a read miss and resulted in a
pseudo-hit on the watch list, its pseudo-hit count C is incre-
mented by 1. Further,

If its pseudo-hit count C is greater than (or equal to) a
threshold T, the fragment identifier is taken out of the watch
list and put into population queue (block S121).



US 9,152,599 B2

15

Now, if the fragment identifier comes as part of the central
system advice ACD and is in the watch list, then nothing
particular is to be done in that case. The intent is to not
increment the pseudo-hit counter for ACD advices, i.e., a
pseudo-hit only occur for local read misses LRM, such that
cold fragments in the ACD list will not get an extra hit com-
pared to local read misses LRM.

If the fragment identifier is not yet in the watch list 12, a
replacement procedure is started by moving the clock 12a
hand through a circular buffer and performing the following
operations in a loop:

If'the pointed element is free the slot is taken by the incom-
ing fragment identifier and its hit count is initialized to 0. The
procedure then stops.

If the pointed element has a low hit count (e.g., some value
closeto 0 or a fraction of T) compared to the average hit count
in the non-resident clock, itis removed, and its slot is taken by
an incoming fragment with its hit count initialized to 0. The
procedure then stops.

Otherwise, the reference count of the pointed fragment
identifier is re-set, or divided by a decay factor (such as 2 or
3), and then the clock hand moves to the next element.

Generally the loop can be performed until the new frag-
ment identifier has found a place in the watch list. Alterna-
tively it can be stopped after a certain number of clock hand
moves to limit processing cycles spent. In the latter case one
has to decide in the last round which fragment identifier (the
new fragment identifier or the one at the current clock hand
position) is kept and which one dropped. The decision can be
a function of the current C and T values.

The threshold T can be set as a configurable value, e.g., 3.
This value can be refined by trial-and-error. As this value
impacts the cache performance, use is made of a method to set
an adaptive threshold as follows.

Given that resident fragments are managed by another
Clock 24a based on their reference count, the adaptive thresh-
old method shall keep track (block S580) of the (moving)
average of reference count of the most-recently evicted frag-
ments, say Ce, that was evicted at block S570.

Then, the clock moving speed is measured for both clocks
(i.e., the clock for resident data 24a and the clock 12a for
non-resident data, i.e., in the watch list).

For example: during a given period of time, the resident
clock 24a moves Nr rounds, while non-resident clock 12a
moves Nn rounds. The threshold T is then set to Ce Nr/Nn.

Recall that by definition T is the reference-count threshold
for populating non-resident fragments into the local cache.
By setting T=Ce Nr/Nn, the fragments entering the local
cache 26 are expected to be more beneficial compared to the
fragments evicted.

In an extreme case, it could happen (at least theoretically)
that there are no population requests for a period of time, and
T is then set to zero because Nr=0. This is not desirable
because cold fragments are allowed to be populated. In order
to avoid this extreme case, the population logic will enforce a
minimum population speed, namely, for a given time period,
the population logic will issue at least Tf fragment-population
requests, where Tf is a pre-defined small number.

In order to populate a non-resident fragment, one resident
fragment from the local cache has to be evicted if the cache is
full. The resident fragment to be evicted is chosen by an
eviction algorithm. In one embodiment, the Clock algorithm
is used, where for each resident fragment, a reference count is
used to record cache hits. Those fragments with few hits are
evicted once they are pointed by the clock hand. However, the
SAN storage server or the application may dictate that spe-
cific fragments will not be considered for eviction by the

10

15

20

25

30

40

45

50

55

60

65

16

eviction algorithm (e.g., fragments identified by the SAN
storage server as “very hot”, i.e., “must-have”). Those “very
hot” fragments will stay in the local cache as long as dictated
by the SAN Storage Server. This can be achieved using a
single bit for each resident fragment that indicates whether
the fragment is pinned (i.e., it cannot be removed from the
cache). For completeness, the resident Clock 24a uses the
same algorithm as the non-resident Clock 12a to reset or
decay reference counts for fragments that are passed up,
because the references counts are not low.

Next considerations as to computer-program code embodi-
ments follow.

Computerized devices can be suitably designed for imple-
menting embodiments of the present invention as described
herein. In that respect, it can be appreciated that the methods
described herein are largely non-interactive and automated.
In exemplary embodiments, the methods described herein
can be implemented either in an interactive, partly-interactive
or non-interactive system. The methods described herein can
be implemented in software (e.g., firmware), hardware, or a
combination thereof. In exemplary embodiments, the meth-
ods described herein are implemented in software, as an
executable program, the latter executed by suitable digital
processing devices. More generally, embodiments of the
present invention can be implemented wherein general-pur-
pose digital computers, such as personal computers, worksta-
tions, etc., are used.

The methods described herein may be in the form of a
source program, executable program (object code), script, or
any other entity comprising a set of instructions to be per-
formed. When in a source program form, then the program
needs to be translated via a compiler, assembler, interpreter,
or the like, as known per se, which may or may not be
included within the memory, so as to operate properly in
connection with the OS. Furthermore, the methods can be
written as an object oriented programming language, which
has classes of data and methods, or a procedure programming
language, which has routines, subroutines, and/or functions.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as computerized sys-
tems, methods or computer program products. Accordingly,
aspects of the present invention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects. Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon. Any combination of
one or more computer readable medium(s) may be utilized.
The computer readable medium may be a computer readable
signal medium or a computer readable storage medium. A
computer readable storage medium may be, for example, but
not limited to, an electronic, magnetic, optical, electromag-
netic, infrared, or semiconductor system, apparatus, or
device, or any suitable combination of the foregoing. More
specific examples (a non-exhaustive list) of the computer
readable storage medium would include the following: an
electrical connection having one or more wires, a hard disk, a
random access memory (RAM), aread-only memory (ROM),
an erasable programmable read-only memory (EPROM or
Flash memory), an optical fiber, a portable compact disc
read-only memory (CD-ROM), an optical storage device, a
magnetic storage device, or any suitable combination of the
foregoing. In the context of this document, a computer read-
able storage medium may be any tangible medium that can



US 9,152,599 B2

17

contain, or store a program for use by or in connection with an
instruction execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device. Program code embodied on a computer
readable medium may be transmitted using any appropriate
medium, including but not limited to wireless, wireline, opti-
cal fiber cable, RF, etc., or any suitable combination of the
foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the C programming language or
similar programming languages. Depending on the aspect of
the invention concerned, the program code may execute
entirely on one local server, partly thereon, and partly on a
remote local server. It may execute partly on alocal server and
partly on a central system or entirely on the central system.

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams can be implemented by computer program
instructions. These computer program instructions may be
provided to a processor of a general purpose computer, spe-
cial purpose computer, or other programmable data process-
ing apparatus to produce a machine, such that the instruc-
tions, which execute via the processor of the computer or
other programmable data processing apparatus, create means
for implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operations to be
performed on the computer, other programmable apparatus or
other devices to produce a computer implemented process
such that the instructions which execute on the computer or
other programmable apparatus provide processes for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the blocks may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved and algorithm
optimization. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of

35

40

45

50

55

18

blocks in the block diagrams and/or flowchart illustration, can
be implemented by special purpose hardware-based systems
that perform the specified functions or acts, or combinations
of special purpose hardware and computer instructions.

While the present invention has been described with refer-
ence to certain embodiments, it will be understood by those
skilled in the art that various changes may be made and
equivalents may be substituted without departing from the
scope of the present invention. In addition, many modifica-
tions may be made to adapt a particular situation or material
to the teachings of the present invention without departing
from its scope. Therefore, it is intended that the present inven-
tion not be limited to the particular embodiments disclosed,
but that the present invention will include all embodiments
falling within the scope of the appended claims. In that
respect, not all the components/operations depicted in the
accompanying drawings need be involved, depending on the
chosen embodiments. In addition, many other variants than
explicitly touched above can be contemplated. For example,
the central server may implement a tiering mechanism alone,
i.e., without a cache mechanism. As another example, each of
the local servers [.S1, [.S2 may assembles fine-grained local
statistics into coarse-grained statistics, in order to make it
available to the central system CS in a format better suited for
the central system.

The invention claimed is:

1. A method for managing cache memories, the method
comprising:

providing a computerized system comprising a shared data

storage system (CS) and several local servers, wherein
the shared data storage system is configured to interact
with the local servers, the local servers serve applica-
tions using respective cache memories, and each of the
local servers accesses data stored in the shared data
storage system,

providing cache data information from each of the local

servers to the shared data storage system, the cache data
information comprising cache hit data representative of
cache hits of each of the local servers; and cache miss
data representative of cache misses of each of the local
servers;

aggregating, at the shared data storage system, at least part

of the cache hit data and the cache miss data received
into aggregated cache data information and providing
the aggregated cache data information to one or more of
the local servers; and

at the one or more of the local servers, updating respective

one or more cache memories used to serve respective
one or more applications based on the aggregated cache
data information provided;

wherein updating a cache memory is carried out asynchro-

nously with respect to requests to the cache memory
from a respective application served by a respective
local server.

2. The method according to claim 1, wherein aggregating
further comprises sorting the cache hit data and the cache
miss data according to occurrences of the cache hit data and
the cache miss data, such that a structure of the aggregated
cache data information obtained reflects the sorting.

3. The method according to claim 1, wherein updating a
cache memory comprises selecting subsets of data in the
aggregated cache data information and populating the cache
memory according to the selected subsets of data.

4. The method according to claim 3, wherein updating a
cache memory comprises selecting at least two distinct sub-
sets of data in the aggregated cache data information; instruct-
ing to populate, without delay, the cache memory with data



US 9,152,599 B2

19

corresponding to one of the distinct subsets of data; and
instructing to place data corresponding to another one of the
distinct subsets of data in a watch-list, and wherein the
method further comprises:
monitoring data in the watch-list to determine data to be
populated in the cache memory; and
populating the data accordingly determined in the cache
memory.
5. The method according to claim 3, wherein the method
further comprises:
instructing to place additional data corresponding to local
cache miss data in the watch-list, the local cache miss
data being representative of cache misses collected by
the local server independently from the aggregated
cache data information, such that both the local cache
miss data and the data corresponding to the second one
of the two distinct subsets of data can be monitored to
determine which data is to be populated in the cache
memory.
6. The method according to claim 4, wherein the watch-list
comprises a circular list of cached objects and monitoring
data in the watch-list comprises evicting an oldest cached

10

15

20

20

object, which has not been requested to be accessed during a
given period of time, from the circular list.

7. The method according to claim 4, wherein the method
further comprises filtering data that already reside in cache
memory before populating a cache memory with such data.

8. The method according to claim 1, wherein aggregated
cache data information are aggregated at a granularity larger
than a granularity used at any subsequent updating of cache
memory.

9. A shared data storage system, configured to perform the
method according to claim 1.

10. A computerized system, comprising the shared data
storage system according to claim 9.

11. A server, configured to perform each of the steps per-
formed by a single local server in the method according to
claim 1.

12. A computer program product for managing cache
memories, the computer program product comprising a non-
transitory computer-readable storage medium having com-
puter-readable program code embodied therewith, the com-
puter-readable program code configured to implement the
method according to claim 1.

#* #* #* #* #*



